A New Approach to the Fundamental Theorem of Surface Theory

نویسندگان

  • PHILIPPE G. CIARLET
  • CRISTINEL MARDARE
چکیده

The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices (aαβ ) of order two and a field of symmetric matrices (bαβ ) of order two together satisfy the Gauss and Codazzi-Mainardi equations in a connected and simply-connected open subset ω of R2, then there exists an immersion θ : ω→R3 such that these fields are the first and second fundamental forms of the surface θ(ω) and this surface is unique up to proper isometries in R3. In this paper, we identify new compatibility conditions, expressed again in terms of the functions aαβ and bαβ , that likewise lead to a similar existence and uniqueness theorem. These conditions take the form ∂1A2−∂2A1 +A1A2−A2A1 = 0 in ω, where A1 and A2 are antisymmetric matrix fields of order three that are functions of the fields (aαβ ) and (bαβ ), the field (aαβ ) appearing in particular through its square root. The unknown immersion θ : ω→R3 is found in the present approach in function spaces “with little regularity”, viz., W 2,p loc (ω;R 3), p > 2. Une nouvelle approche du théorème fondamental de la théorie des surfaces. RÉSUMÉ. Le théorème fondamental de la théorie des surfaces affirme classiquement que, si un champ de matrices (aαβ ) symétriques définies positives d’ordre deux et un champ de matrices (bαβ ) symétriques d’ordre deux satisfont ensemble les équations de Gauss et Codazzi-Mainardi dans un ouvert ω ⊂ R2 connexe et simplement connexe, alors il existe une immersion θ : ω → R3 telle que ces deux champs soient les première et deuxième formes fondamentales de la surface θ(ω), et cette surface est unique aux isométries propres de R3 près. Dans cet article, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l’aide des fonctions aαβ et bαβ , qui conduisent aussi à un théorème analogue d’existence et d’unicité. Ces conditions sont de la forme ∂1A2−∂2A1 +A1A2−A2A1 = 0 dans ω, où A1 et A2 sont des champs de matrices antisymétriques d’ordre trois, qui sont des fonctions des champs (aαβ ) et (bαβ ), le champ (aαβ ) apparaissant en particulier par l’intermédiaire de sa racine carrée. L’immersion inconnue θ : ω → R3 est trouvée dans cette approche dans des espaces fonctionnels “de faible régularité”, à savoir W 2,p loc (ω;R 3), p > 2. A NEW APPROACH TO THE FUNDAMENTAL THEOREM OF SURFACE THEORY 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

A New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces

In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

Frobenius kernel and Wedderburn's little theorem

We give a new proof of the well known Wedderburn's little theorem (1905) that a finite‎ ‎division ring is commutative‎. ‎We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group‎ ‎theory to build a proof‎.

متن کامل

Investigating the Ethical and Legal Bases of the Central Beneficiary and the Central Shareholder in Joint Stock Companies

Background: Today, commercial activities have become more complex and complex than in the past, and for this reason, it has become a category with more sensitivities. One of the dimensions of trade sensitivity in the present age is related to the type of allocation of trade interests and beneficiaries of these interests. In the past, only family businesses and businesses benefited from the bene...

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008